

Medium effects on pion production in heavy ion collisions

Z. Zhang and C.M. Ko

We have extended the relativistic Vlasov-Uehling-Uhlenbeck (RVUU) model based on the nonlinear relativistic NL ρ mean-field model [1] by including the isospin-dependent pion s -wave and p -wave potentials in nuclear medium [2], which are obtained from calculations based on the chiral perturbation theory [3] and the Δ -hole model [4,5], respectively. Their effects on the π^-/π^+ ratio in Au + Au collisions at $E/A = 400$ MeV have been studied in following six different cases: i) without the threshold and pion in-medium effects (free), namely, nucleons, Δ resonances and pions are treated as free particles in all reactions; (ii) with only the threshold effect (Th); (iii) with the threshold effect and the pion s -wave potential (Th+S); (iv) with the threshold effect and the pion p -wave potential (Th+P); (v) with the threshold effect and both the pion s -wave and p -wave potentials (Th+S+P); (vi) same as case (v) but with the coupling constant for the isovector-vector ρ meson to nucleon in the NL ρ model reduced. It is seen from Fig. 1 that while the π^-/π^+ ratio is enhanced by the pion p -wave potential, it is significantly suppressed by the pion s -wave potential. As a result, the pion potentials in nuclear medium lead to a significant reduction (about 10 %) of the π^-/π^+ ratio, which is comparable to that due to the stiffness of nuclear symmetry energy at high densities. After including both the threshold effect and the pion in-medium effect, the π^-/π^+ ratio obtained from the RVUU model based on the relativistic NL ρ model, which has a value of $L = 84$ MeV for the slope parameter of nuclear symmetry energy, is slightly larger than the experimental upper value from the FOPI Collaboration [6]. Using a softer symmetry energy of $L=59$ MeV, which is consistent with currently known empirical value [7,8], by reducing the ρ -nucleon coupling constant in the NL ρ model can, however, well reproduce the experimental data on the charged pion ratio.

FIG. 1. The π^-/π^+ ratio in Au+Au collisions at impact parameter of 1.4 fm and energy of $E/A = 400$ MeV from the NL ρ model in different cases (see text for details). Experimental data from the FOPI collaboration [6] are shown as the cyan band.

- [1] T. Song and C.M. Ko, Phys. Rev. C **91**, 014901 (2015).
- [2] Z. Zhang and C.M. Ko, Phys. Rev. C **95**, 064604.
- [3] N. Kaiser and W. Weise, Phys. Lett. B **512**, 283 (2001).
- [4] G.E. Brown and W. Weise, Phys. Rep. **22**, 279 (1975).
- [5] L. Xiong, C.M. Ko, and V. Koch, Phys. Rev. C **47**, 788 (1993).
- [6] W. Reisdorf *et al.* (FOPI Collaboration), Nucl. Phys. **A848**, 366 (2010).
- [7] M. Oertel, M. Hempel, T. Klähn, and S. Typel, Rev. Mod. Phys. **89**, 015007 (2017).
- [8] B.-A. Li, arXiv:1701.03564 [nucl-th].